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Error calculus is the question of finding the error on a function of what is being measured. We study in this 
monograph error calculus with a mathematical point of view and in relationship with the experiment. Gauss 
was the first to propose an error calculus in the early 19th century. This calculation has a property of 
consistency makes it superior in many questions to other formulations proposed thereafter.  
 Let us consider the problem further in detail. The objectives of estimating the error can be of various 
kinds: a) Either one is interested in a specified situation and looking for a way to have a pessimistic estimate 
of the error allowing to speak in security. One is led then to work with bounds, intervals or domains, and see 
how they are transformed though calculations. This approach is ideal in theory, however, is terribly 
complicated or impractical in many cases. Even in the case of errors due to representations of real numbers 
in computer science this approach can only be carried out in very simple contexts. b) Or one does want just 
an order of magnitude of the error, easily obtained. This is often the case in engineering. In this context, a 
large number of practices exist. Since they must be simple and fast, they cannot make a real calculation of 
probabilities that describe how the probability of measurement is transmitted through the functions of the 
model. These calculations of "image distributions" or "image laws" are also quickly intractable. So often 
merely hybrid estimates are used, making for example the assumption that the measurement errors are 
Gaussian and calculating the transmission error by linearization in the neighborhood of the mean value. This 
makes services but we feel here some discomfort because ultimately at the end of the calculation we do not 
know exactly what the error obtained really is. c) Finally, we can look for the right mathematical language to 
make a true "limited expansion" of the error that is asymptotically exact if the error is small. It is then very 
close to a sensitivity analysis. But it is more precisely a probabilistic sensitivity analysis, which is important 
in the case of non-linear models. 
 The calculus proposed by Gauss belongs to the approach c) but only in one aspect, the simplest one 
on "infinitesimal variances" in the finite dimensional case. With this basic formalism it cannot be considered 
errors on functions or geometric objects such as surfaces, or on random processes. But the ideas of Gauss can 
be pushed further by an extension principle based on the theory of Dirichlet forms. We obtain then a 
complete Lipschitzian calculus that behaves perfectly by images and product and allows an easy construction 
of the basic notions of what is called (in stochastic analysis and finance) Malliavin calculus. It connects to 
the statistics by means of the Fisher information. We will only touch upon this theory giving references for 
the reader who wishes to deepen. 
 However, we will give a consequence of this theory. It provides an explanation for the delicate 
question of errors permanency raised by Henri Poincaré. 
 After an overview of the ideas of Gauss on the law of errors, those of Poincare on errors 
permanency, and the presentation of the Gauss calculus and its coherence, we will present the extension tool 
that allows to build a Lipschitz calculus and its axiomatization. We then discuss the relationship with 
experiments and statistics and give examples of finite and infinite dimensional repeated samples where 
appears the phenomenon of the permanence of errors. This text is based on articles [14] and the book [15]. 
 
 Instead of discrete variables, continuous variables are often flawed by errors. To tackle this problem 
several attitudes are encountered. We propose here to speak of errors rigorously, supposing them small and 
controlling the terms of their expansion in the calculations. This approach was initiated by Legendre, 
Laplace and Gauss in the early 19th century, in a series of works denoted by Classical Error Theory. The 
most famous of them is the demonstration by Gauss of the "law of errors" in which he shows, with some 
implicit assumptions that will be highlighted by other authors, that if we consider in an experimental 
situation, that the arithmetic mean of measurements is the best value to take into account, we must admit that 
the errors follow a normal distribution. His argument is probabilistic : the quantity to be measured is a 
random variable X and the measurements X1 , . . . , Xn are supposed to be conditionally independent knowing 
X.  

At the end of the same century, in his course Calcul des probabilités Henri Poincaré returns to this 
question by showing that if we weaken some assumptions of Gauss, laws other than the normal distribution 
can be obtained. He discusses at length a new and delicate point : the phenomenon of permanence of errors, 
that he explains in the following way : 



 “Avec un mètre divisé en millimètres, on ne pourra jamais, écrit-il, si souvent 
qu’on répète les mesures, déterminer une longueur à un millionième de millimètre 
près”. [With a meter graduated in millimeters, it will never be possible, so often 
measurements are repeated, to determine a length up to a millionth of millimeter.] 

  This phenomenon is well known to physicists, in the history of physics we have never been able to 
make accurate measurements with crude instruments, see [1]. That means doing a lot of measurements and 
take the average is not enough to guarantee an arbitrarily fine precision. We will explore this question and 
give a mathematical explanation of this phenomenon. Poincaré did not develop a mathematical formalism for 
this, he insists, however, on the advantage of assuming small errors because then the argument of Gauss 
becomes compatible with non-linear changes of variables and can be written though a differential calculus. 

1. The error calculus of Gauss 
Twelve years after his demonstration justifying the normal law, Gauss is interested in the propagation of errors. 
(Theoria combinationis 1821). Given a quantity U = F (V1 , V2 , . . .) function of other quantities V1 , V2 , . . .,  he 
poses the problem of calculating the quadratic error on U knowing the quadratic errors   
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these errors being supposed small and independent.  
His answer is the following  
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and he gives also the covariance of the error on U and another function of V1 , V2 , . . . .  
Formula (1) possesses a property that gives it a great superiority with respect to other formulae often proposed in 
textbooks. It is the coherence property. With a formula such that  
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errors may depend on the way the function F is written. Already in dimension 2 if we apply (2) to a linear one to 
one map and then to its inverse, we obtain that the identity map increases the errors what is unacceptable.  
This doesn't happen with Gauss calculus. In order to see that, let us introduce the differential operator  
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and let us remark that (1) writes 
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Coherence comes then from the coherence of the transport of a differential operator by a function : If L is such an 
operator, if u and v denote regular one to one maps and if  θuL denotes the operator  
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ϕ L(ϕ  u)  u−1 
we have 
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θv uL = θv (θuL). 
Now the errors on V1 , V2 , . . . may be non independent and may depend on the values of V1 , V2 , . . . : we consider 
a field of positive symmetric matrices   
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(σ ij (v1,v2,))  on Rd representing the conditional variances and 
covariances of the errors knowing the values v1, v2, ...  of V1, V2, ... and the calculus writes : 
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The error calculus of Gauss deals with variances and covariances of errors regardless of the mean error that is to 
say without taking in account the biases. It is important to emphasize that this is why it involves only first 
derivatives. Indeed, if we start from a situation where the errors are centered, after a non linear transform errors are 
no more centered and it can be verified that the bias of the error is of the same order of magnitude as the variance 
(see [15 ]). If we apply other non linear regular applications this situation will persist. This allows to see that the 
variances can be calculated by a first order differential calculus involving only the variances, while the means of 
errors need a differential calculation of the second order which involves the means and the variances. 
 The coherence of the Gauss calculus allows it to be geometrized.  If a quantity varies on a manifold, the 
error may be attached to the variety as a geometric object. The variance of the error is given by a quadratic form 
which is a Riemannian metric on the manifold. It is possible to take images by injective C1 applications in a 



coherent formalism independent of the way the functions are written. This relates to the theory of diffusion 
processes on manifolds for which we refer to references [2]. 

2. Error calculus with extension tool  
 
The calculus of Gauss is limited by the fact that it doesn't possess any extension tool. By an extension tool 
we mean, in mathematics, a mean of calculating on limit objects, i.e. defined by limits. Starting from the 
error on (V1 , V2 , V3 ) the Gauss calculus allows to compute the error on a differentiable function of (V1 , V2 
, V3 ) and that's all. 
 In particular we would like to be able to compute the error when the function is not explicit but given 
by a differential equation or an integral or as solution of a boundary value problem. Also we would like to 
extend this calculus to Lipschitz functions since it is a priori clear that a function with Lipschitz constant ≤ 
1, is contracting and therefore diminishes the errors.  
 Also in a frequent situation in probability theory where we have a sequence of quantities X1 , X2 , . . . , 
Xn , . . . and where we know the errors on the regular functions of a finite number of the Xn , we would like to 
deduce the error on functions of an infinite number of the Xn or at least some of them. We give examples 
below.  
It is actually possible to equip the error calculus with a natural extension tool. 
 
For this we come back to the initial idea of Gauss to consider that erroneous quantities are random quantities, 
say defined on a probability space (Ω, A, P). The quadratic error on a random variable X is itself random, we 
denote it Γ[X ]. It is supposed infinitesimal but this doesn't appear in the notation, as if we had an 
infinitesimal unit for errors fixed through the problem. The tool is the following one: we suppose that if Xn 
→ X in L2(Ω, A, P) and if the error Γ[Xm − Xn ] on Xm − Xn may be made as small as one wants in L1(P) for 
m, n large enough, then the error Γ[Xn − X ] tends to zero in L1(P).  
 It is a reinforced coherence principle since it means that the quadratic error on X is attached to X as a 
mathematical mapping and that if the pair (Xn , quadratic error on Xn ) converges in a suitable sense, it 
converges necessarily to (X, quadratic error on X ). 
 
This is axiomatized in the following way :  
We call error structure a probability space equipped with a local Dirichlet form possessing a squared field 
operator.  
It is a term  

(Ω, A, P, D, Γ)	
  
where	
  (Ω,	
  A,P)	
  is	
  a	
  probability	
  space,	
  satisfying the four following properties : 
 (1.) D is a dense subvectorspace of L2(Ω,A,P)	
  
	
   (2.) Γ	
  is	
  a	
  symmetric	
  bilinear	
  application	
  of	
  DxD into L1(P) satisfying the functional calculus of 
class 
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v ∈Dn, for F and G of class C1 and Lipschitz from Rm [resp. 
Rn ] into R, we have   
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G  v ∈D and  
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 (3.) The bilinear form E[f,g] = E[Γ[f,g]]	
   	
   is	
   closed,	
  what	
  means	
   that	
  D is complete for the norm  
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 (4.) Finally we suppose 
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1∈  D et Γ[1,1]=0. 
	
  
Comment. We always note E[f] for E[f,f] and also Γ[f] pour Γ[f,f]. With this definition the form E  is a Dirichlet 
form, notion introduced by Beurling and Deny [3] [13] as a tool in potential theory which received a probabilist 
interpretation in terms of symmetric Markov processes thanks to the works of Silverstein and Fukushima cf [3] [5] 
[12]. The operator Γ is the squared field operator also called the carré du champ operator associated to E. It has 
been studied by many authors in more general frameworks than the present setting cf [4] [5]. 

2.1 First examples 
 a) A simple example of error structure is the term  

(R, B(R), µ, H1(µ), γ ) 
where µ is the reduced normal law µ = N (0, 1) and H1(µ) is the set of f ∈ L2(µ) such that f ′ (in the sense of 



distributions) be in L2(µ) with γ [f ] = f ′ 2 for f ∈ H1(µ). This structure is associated with the real valued 
Ornstein-Uhlenbeck process cf. [15]. 
 b) Let D be a connected open set of Rd with unit volume, λd be the Lebesgue measure, we take (Ω, A, 
P) = (D, B(D), λd). We define 
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where the aij  are applications from D into R such that 
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It is possible to show that the form E[u, v] = EΓ[u, v] with 

€ 

u,v ∈ CK
∞ (D) is closable (cf [5]) in other words, 

there exists an extension of Γ to a subspace D of L2, D
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⊃ CK
∞ (D) such that (Ω, A, P, D, Γ) be an error 

structure. 

2.2 Taking the image : error on a the result of a function of measured quantities  
The image of an error structure by an application is defined very naturally and yields still an error structure, 
as soon as the application satisfies some rather weak assumptions cf [6]. In particular if (Ω, A, P, D, Γ) is an 
error structure and if X is a random variable with values in Rd whose components are in D, noting PX the 
probability distribution of X and putting 
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DX = f ∈ L2(PX ) : f  X ∈ D{ }
ΓX [ f ](x) = E[Γ[ f  X] | X = x], f ∈ DX

 

then the term (Rd, B(Rd), PX, DX, ΓX) is an error structure. 

2.3 Taking the product : error on a pair or a family of independent quantities  
The product of two or of a countable infinity of error structures is always defined and yields an error 
structure. We obtained easily in this way error structures on infinite dimensional spaces, cf [6], for instance 
on the Wiener space or on the Poisson space and on models derived from them. It is a useful way of 
introducing the Malliavin calculus pedagogically, cf [7].  
 Let us show, as example, the construction of the Ornstein-Uhlenbeck structure on the space of the 
Brownian motion, i.e. on the Wiener space.  
 Let us come back to the one dimensional structure of example a)  

(R, B(R), µ, H1(µ), γ ) 
and let us consider the infinite product : 

(Ω, A, P, D, Γ) = (R, B(R), µ, H1(µ), γ )N = (RN, B(RN), µN, D, Γ). 
The coordinate mappings Xn , by construction of the product, are reduced independent Gaussian, belong to D 
and satisfy  

Γ[Xn]  =  1 
Γ[Xm, Xn]  =  0   m≠n. 

Let ξn be an orthonormal basis of L2(R+, dt). We put  
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t
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Then (Bt)t≥0 is a Brownian motion and if f ∈ L2(R+) writes  f =Σn anξn , the random variable  
Σn anXn is denoted  
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and, by the extension tool, the error calculus extends to other Brownian functionals as solutions of stochastic 
differential equations with Lipschitz coefficients cf [6] [7] [11].  



3. Error calculus and statistics 
 
To switch from the Gauss error calculus to a Lipschitz complete calculus it is necessary to have a probability 
measure. If quantities vary but remain deterministic as often in mechanics, they must be placed in a probabilistic 
framework. It is the triplet  (Ω, A, P) of an error structure (Ω, A, P, D, Γ).  
 One approach is to follow the ideas of E. Hopf in the 1930s who, in the spirit of the work of Poincaré, 
showed, using general forms of limit theorems in distribution, that many dynamical systems have natural laws of 
probability that can be taken as a priori distributions, see [8 ] and [15]. 
 A second way consists to start with a second order elliptic operator L satisfying 
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Γ[F] = LF 2 − 2FLF                                                             (4) 
(whose only the second order terms are determined by this relation) which yields the framework of an error 
calculus for the variances and the biases. Then to construct the invariant probability measure with respect to which 
the diffusion of generator L is symmetric.  
 We will follow a third way which is more strongly connected with applications. Let us consider that the 
experimental conditions are sufficiently specified for the probability measure P be obtained as usually by statistical 
methods and we will show that the statistics yield also actually the operator Γ hence finally the error structure, at 
least on a minimal domain for Γ.  
 Let us consider an erroneous d-dimensional quantity X . The image space by X is 

(Rd, B(Rd ), PX(dx))	
  
The operator Γ that we try to define writes under the form  
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ΓX [F](x) = Fi '
i, j=1

d

∑ (x)Fj '(x)aij (x)  

where the matrix A(x) = (aij (x)) is positive symmetric, it is this matrix that we need to know, it represent the accuracy 
of the knowledge of X at the point x.  
 Let us remark that is G : Rd→ Rm is of class 
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C1∩ Lip by the functional calculus, the random variable G(x) 
is known with the accuracy  

ΓX[G, G](x) = ∇x G.A(x).(∇x G)t                                                                (5) 
where ∇x G is the Jacobian matrix of G at x. 
 Now in order to know X , under the conditional law X = x denoted Ex , we perform measurements that are 
estimates of the parameter x. Let T be such an estimate with values in Rm with covariance matrix  

Ex [(T − Ex [T ]).(T − Ex [T ])t ].  
Under the statistical hypotheses called "of regular model" the Fréchet-Darmois-Cramer-Rao inequality writes  

E[(T − Ex[T ]).(T − Ex[T ])
t
]  ≥  ∇xExT .J (x)

-1.(∇xExT )
t                                        (6) 

In the sense of the order of cone of the positive symmetric matrices, where J (x) is the Fisher information matrix, cf 
[9]. The best precision that can be reached on X is therefore J (x)−1 and comparison of (5) and (6) leads to put  

Γ(x) = J (x)
-1. 

 It is easily seen that this definition is compatible with regular change of variables : if ψ(x) is estimated 
instead of x, we obtain as error structure the image by ψ of the error structure of X. 
 This natural connection between Fisher information and the approach of errors based on Dirichlet forms 
opens a series of questions which are still at the level of research : a) Under which hypotheses can we obtain 
directly J(x)−1 possibly singular without to take the inverse of the Fisher information matrix ? b) Do the asymptotic 
methods of statistics give tools for studying the closability of Dirichlet pre-forms on Rd ? See [10].  

4. What happens when we repeat the measurements ?  
 
The introduction of errors operators in addition to the language of probability theory allows to treat with 
more finesse the question of repeated samples and to answer by explicit models to the phenomenon of error 
permanency emphasized by Poincaré.  
 As we shall see some projective systems for which the limit of the probability spaces exists, do not 
possess a limit error structure, but define only an error pre-structure in the following sense : 
 A term (Ω, A, P, D0 , Γ) is an error pre-structure if (Ω, A, P) is a probability space and if D0, Γ satisfy 
properties (1.), (2.) and (4.) of error structures but not necessarily property (3.). 
 There are therefore closable and non closable error pre-structures. Images and products are defined 
easily for error pre-structures. Let us fix some notation for projective systems under usual hypotheses cf [6] : 



Given measurable spaces (Ei , Fi ) i integer, for α in the set J of finite parts of de N∗ (=N\{0}) a projective 
system of error structures (or of error pre-structures) ia family (Eα , Fα , mα , D0

α, Γα ) of error (pre-)structures 
where (Eα , Fα ) = 
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i∈α
∏ (Ei , Fi ) are compatible in usual sense. Putting then 
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D0 = D0
α

α∈J
  this defines an 

error pre-structure : 
(E, F , m, D0 , Γ) 

whose projections are the (Eα , Fα , mα , D0
α, Γα ). 

 The projective systems that we consider from now on are such that the (Ei , Fi ) are all identical and 
such that the projective system be auto-isomorphic by translation of the indices, this hypothesis is taken in 
order to represent repeated samples.  
 We shall give three examples. In the examples 4.1 and 4.2 the situation whose repeated samples are 
considered is finite dimensional, it is a finite dimensional probabilistic model with erroneous quantities. The 
asymptotic properties of repeated samples are different in cases 4.1 and 4.2. In the example 4.3 the 
probabilistic model whose repeated samples are studied is a space of stochastic processes, infinite 
dimensional, this case is important because it gives the idea of the most interesting applications (statistical 
physics, filtering and forecasting, mathematical finance).  

4.1 Independent samples, correlated errors, case of asymptotic convergence  
In this first example we take, the errors are correlated, (as suggested Poicaré) and the projective system is 
closable : 

(Ei, Fi) = ([0, 1], B([0, 1]))     
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∀i ∈N∗ 

The pre-structure (Eα , Fα , mα , D0
α, Γα ) is defined by 
(Eα , Fα , mα) = ([0, 1]|α| , B([0, 1])|α| , λ|α| ) 

where 
|α| = card(α) and λ|α| is the Lebesgue measure of dimension |α|, one takes D0

α= C0
K (]0, 1[|α| )
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⊗R, and for  
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u,v ∈ Dα
0  we put 
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Γα[u,v] =
∂u
∂xii, j∈α

∑ ∂v
∂x j

aij  where the aij are constant and such that the matrices 
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(aij )i, j∈α  

be positive symmetric.  
 In this case it is possible to show that the pre-structures (Eα , Fα , mα , D0

α, Γα ) are closable and also 
the pre-structure defined by their projective system. Its closure difines an error structure  

(E, F, m, D, Γ) 
whose projections are the closures of the (Eα , Fα , mα , D0

α, Γα ). 
 The properties of this structure (E, F, m, D, Γ) will give the answer to the question of Poincaré. We 
are in the case where the samples are independent but the errors correlated. If aij=1, it may be shown by the 
law of large numbers that the error on the mean vanishes.  
 This is still the case if aij=a(i-j) where a is a function such that Σξiξja(i-j)>0, thanks to the theorem of 
representation of Bochner cf [14]. 
 It is no more the case in the following example.  

4.2 Independent samples, correlated errors, no asymptotic convergence  
Let us suppose that each measurement yields a scalar quantity, we consider the product probability structure 
representing the independent repeated samples Xi  (coordinate mappings) and on this product space we define on 
regular functions the squared field operator (operator representing the les variances and co-variances of the errors) 
by  
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Γα[u] = ( u'i
i∈α
∑ f (Xi))

2 + u'i
2 .g(Xi

i∈α
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A suitable choice of functions f and g allows to show that the time average of the samples tends indeed to their 
expectation, but the error on the mean, that is to say :  
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Γ[ 1N h(Xn )]
n=1

N

∑  

tends to 
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( h' . f )2∫  that is not zero generally, cf [14] (2001) example B. 
This model describes a situation similar to the one quoted by Poincaré where doing the mean of a large number of 
samples do not makes the error tend to zero. 



4.3 Indications on infinite dimensional cases and Malliavin calculus  
As an example involving the infinite dimension and allowing to show the formalism and the arguments, let 
us consider the case of a twine of length L thrown on a plan whose the total length of the projection on 
the axis Ox, is measured for instance by means of thin parallel lines.  
 By repeated samples this allows to measure the length of the twine as we shall see in a moment. This 
can be modelled in the following way : the twine is parametrized by  
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X(t) = X0 + cos(ϕ + Bs)ds0

t
∫

Y (t) = X0 + sin(ϕ + Bs)ds0

t
∫ 0 ≤ t ≤ L ≤1

 

where B is a standard Brownian motion and ϕ uniform on the circle, independent of B. We measure the 
quantity  
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A(ϕ,ω) = cos(ϕ + Bs)0

L
∫ ds 

The expectation EA is obtained by repeated samples and the length L of the twine is given by the formula  
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EA =
2L
π

 

that comes immediately from the expression of A by integration since ϕ and B are independent.  
 As hypothesis on the errors we suppose that there is an error on ϕ and an error on B independent but 
that the errors on the different samples are correlated.  
On ϕ we consider an error similar to that of the case 4.2.  
On B we consider for simplicity the error given by the Dirichlet form associated with the Ornstein-
Uhlenbeck semi-group cf [7] whose construction was given previously.  
 

 
 
Explicit computations may be performed if the operator that describes the correlation of the errors is 
specified. For instance if we take the multiplication by a function a(ϕ,ω) for the Wiener space and by 
b(ϕ,ω) for the angle ϕ, with a(ϕ,ω)=b(ϕ,ω)
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g (ϕ)=1[0,2π](ϕ), we obtain for the quadratic asymptotic error  
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limN↑∞ Γ[ 1N An ] = [ 12π ( cos x − sin x dx) e
−
x 2

2s

2πs
dsdx]2

t

L
∫R∫[0,L ]∫

n=1

N

∑ (dt + δ0(t))  

expression that shows that for infinite dimensional phenomena, the results of error calculations depend 
highly on the choice of the hypotheses concerning the probability distributions and the correlations.  
Here the twine is of class C1. Other models may be studied and computed easily when the twine is supposed 
to be C2, etc. voir [15]. 
 



Conclusion 
 
In this introductory text we wanted to convince the reader of the interest to push forward the ideas of Gauss on an 
error calculus based on differential calculus what gives it some likeness with sensitivity calculus. 
 1) It is not, however, a sensitivity analysis in the sense of a derivation with respect to a parameter of the 
model, a strictly deterministic operation. Because the random nature of the error (even if it is infinitely small) 
makes that after a non-linear mapping, the average error is not the image of the average of the initial error. It is 
therefore a probabilistic sensitivity analysis. And this translates into a calculus of second order for the biases. 
 2) Why use Dirichlet forms? They are a mathematical concept, in my opinion, as important as the concept 
of probability space. Their properties are also often similar to those encountered in probability. 
I think I have demonstrated mathematically that this is the natural object which is required in the calculation of 
errors as soon one wishes to reason about less basic physical objects. Cf "When and how an error yields a Dirichlet 
form" Journal of Functional Analysis Vol 240, Issue 2 , (2006) 445-494. 
 
 
 
 

 
Example of elliptic field obtained as errors 

On a pair of quantities depending on an erroneous Brownian motion 
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