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Abstract
In this paper we consider some elementary and fair zero-sum games of chance to study the impact
of random effects on the wealth distribution of N interacting players. Even if an exhaustive ana-
lytical study of such games between many players may be tricky, numerical experiments highlight
interesting asymptotic properties. From a mathematical perspective, we interestingly recover
for small and high-frequency transactions some diffusion limits extensively used in population
genetics. Finally, the impact of small tax rates on the preceding dynamics is discussed for several
regulation mechanisms.

Keywords: Fair zero-sum games, Wright-Fisher diffusions, Impact of tax rate.

JEL classification: C32, C63, D31.

1 Introduction and numerical experiments

We consider in this paper an economy simplified to the extreme and reduced to random games be-
tween agents, the games being fair in expectation. This situation may be seen as a basic model of
randomness in the physical world or modeling the effect of volatility on prices, considering that at
least for the first order of magnitude the games may be considered with zero expectations. The focus
is therefore on social and collective phenomena appearing in this purely speculative framework with
or without regulation mechanisms.

The objective is to study the dynamic of some elementary Markov games of chance to highlight
the impact of random effects on the wealth distribution of interacting players. Surprisingly, even
if zero-sum games of chance (supposed to be fair in expectation) are played at any round, wealth
distribution converges toward the maximal inequality case. This qualitative behavior has already
been empirically observed (see [25] Chap. 15, [3]) and here the conclusion is both supported by
numerical and mathematical arguments at the very least for small and high-frequency transactions
where Wright-Fisher diffusion processes naturally appear as limit models. We also investigate the
impact of some regulation mechanisms on the qualitative behavior of the considered models, in par-
ticular, our findings provide a very simple agent-based framework for understanding how the Beta
distribution, widely used in the literature as descriptive models for the size distribution of income
([22], [4]), arises in wealth repartition problems.

Let us start by some elementary definitions and examples.
∗Cired, Ecole des Ponts-ParisTech.
†Corresponding author. Centre d’Economie de la Sorbonne, Maison des Sciences Economiques, 106 bd de l’Hôpital,

75013 Paris, France. Email: cchorro@univ-paris1.fr.
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1.1 Fair elementary zero-sum games of chance (FEG)

We consider two players playing during n ∈ N∗ consecutive rounds a zero-sum game of chance1. If we
denote by (P ik)k∈{1,...,n} the payoff process (defined on the probability space (Ω,A,P)) of the player
i ∈ {1, 2}, starting from a constant initial wealth Xi

0, we have P 1
k = −P 2

k (zero-sum game) and the
wealth process is given by

Xi
k = Xi

0 +
∑

1 6 j 6 k

P ij .

Definition 1. We say that the preceding zero-sum game of chance is fair in expectation on (Ω,A,P)
(and we will write FEG for fair elementary game) if ∀k ∈ {1, ..., n}, EP[P ik] = 0.

Remark: Let us emphasize that considering games fair in expectation is philosophically the most
natural if we have no additional reason for the presence of biases, and that it was indeed the first
historical approach of the purse taken by Louis Bachelier in [2] who supposed that "the expectation
of the speculator is zero".

A game is fair in expectation as soon as the random variables P ik are symmetric (e.g. for the
classical two players fair coin flipping game where each player wins or losses one unit), but this
condition is not necessary (and not really economically relevant) as we are going to see in the three
following one stage (n=1) examples:

- Example 1: Calabash game. (See [6], p. 57)

In its simplest form, this traditional African game also known as the gourd game is between
two players. Each player uses seeds of a certain color and all the seeds have an identical form. At
each turn, each player puts into the gourd as many seeds as he wants. The gourd is a sort of large
hollowed-out melon where care has been taken to leave inside a stem on which a single seed can
sit. The gourd is shaken until one of the seeds comes to rest on this stem and the player of the
corresponding color collects all the seeds in the gourd. After this, players exchange the seeds so as to
keep the same color. For the one stage game, if we denote by N i

1 the number of seeds bet by player
i (0 < N i

1 6 Xi
0), we have

P 1
1 = N2

11
U1 6

N1
1

N1
1+N2

1

−N1
11

U1>
N1
1

N1
1+N2

1

where U1 follows a uniform distribution on [0, 1]. The game is a FEG.

- Example 2: Digital options.

Suppose that player 1 sells (or buys) to player 2 a cash-or-nothing call option with strike K and
maturity T on a risky asset whose value at time T is denoted by ST . If the no-arbitrage transaction
price is associated to an equivalent martingale measure Q, we have

P 1
1 = (EQ[1ST > K ]− 1)1ST > K + EQ[1ST > K ]1ST<K

and the game is fair in expectation on (Ω,A,Q).

1By game of chance we mean, in this paper, a game whose outcome depends on some random experiments. Contrary
to what happen in game theory we don’t consider strategic interactions between players.
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- Example 3: Elementary market games with proportional bets2.

Let player i bet a fixed amount a of its initial wealth and win the game with probability Xi
0.

Supposing that X1
0 +X2

0 = 1 (reasoning in proportion of the total initial wealth X1
0 +X2

0 instead of
using absolute values) we have

P i1 = a(1−Xi
0)1U1 6 Xi

0
− aX1

01U1>Xi
0

where U1 follows a uniform distribution on [0, 1] and the game is fair in expectation.

Remark: The calabash games are generic in their principle in the sense that elementary market
games with proportional bets may be seen as asymptotic versions of calabash games (see Appendix).

1.2 Numerical study of elementary market games with proportional bets

We consider in this subsection a population of N = 100 players with uniformly distributed initial
wealth: ∀i ∈ {1, ..., 100}, Xi

0 = 1/100. For each stage we select randomly and independently two
players that play an elementary market game with proportional bets (see Example 3) with a = 10%.
Even if FEG are played at each round, the randomness clearly induces disparities in wealth between
economical agents.

Figure 1: The first line (resp. the second line) represents the distribution of the wealth (resp. the distribution
of the increasing rearrangement of wealth) of the N = 100 players after n = 100 (first column), n = 1000
(second column), n = 10000 (third column) and n = 100000 (fourth column) FEG starting from uniformly
distributed initial wealth.

2It is reasonable to suppose that the amount of money bet by each economical agent is proportional to its wealth
(wealthy people tend to invest more than the less wealthy). For example, this kind of mechanism is considered in [5]
in the framework of econophysics.
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In Figure 1, we represent the distribution of the wealth and of its increasing rearrangement after
a large number of steps. We can see that inequalities become greater and greater while a poor
may become richer and a rich may become poorer at each stage3. In particular the percentage of
players that own less than the average wealth increases from around 50% after 100 transactions to
around 90% after 100000: poverty traps appear, as underlined in Figure 2. To support this intuition,
we represent in Figure 3 the evolution of the Gini coefficient [13] and of the Lorentz curve [18] as
functions of the number of transactions. We remark without ambiguities that the repartition of
wealth converges, according to these classical indicators, toward the maximal inequality case even if
elementary exchange mechanisms are fair in expectation4.

Figure 2: Five individual wealth trajectories: creation of poverty traps

Figure 3: Gini coefficient (left) and Lorentz curve (right). The value of the Lorentz curve L(p) represents the
percentage of the poorer players that possess p percent of the total wealth. For 100, 1000, 10000 and 100000
transactions, the Lorentz curve moves away further and further from the line of perfect equality. The Gini
coefficient equals 1 − 2A where A is the integral of the Lorentz curve. A Gini coefficient of zero expresses
perfect equality. A Gini coefficient of one expresses maximal inequality.

3The emergence of inequalities is also numerically observed in [25] for others fair games of chance even if the
convergence toward the maximal inequality situation is not reported.

4In simulations that are not reported here, we can also observe that the Gini coefficient of the economy in an
increasing function of a: inequalities are greater in more speculative economy.
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2 Mathematical study of elementary market games with propor-
tional bets

2.1 Two players games

2.1.1 Elementary market games with proportional bets

Let us consider the repeated version of the elementary market game with proportional bets described
in Example 3. If we denote by Xi

n the wealth of player i after n transactions, we have X1
n +X2

n = 1
(zero-sum game) and

Xi
n+1 = Xi

n + a(1−Xi
n)1Un+1 6 Xi

n
− aXi

n1Un+1>Xi
n

where (Uk)k∈N∗ is a sample of the uniform distribution on [0, 1]. The sequence (Xi
n)n∈N is a Markov

chain with
E[Xi

n+1 | Xi
n] = (Xi

n + a(1−Xi
n))Xi

n + (Xi
n − aXi

n)(1−Xi
n) = Xi

n.

Thus (Xi
n)n∈N is a non-negative and bounded martingale that converges almost-surely and in Lp

(1 6 p <∞) toward a random variable Xi
∞ that is invariant with respect to the transition probability

of the chain given by
P (x, dy) = xεx+a(1−x)(dy) + (1− x)εx−ax(dy)

where εα(dy) is the Dirac mass at the point α ∈ R. Passing to the limit in the relation

E[(Xi
n+1 −Xi

n)2 | Xi
n] = Xi

na
2(1−Xi

n)2 + (1−Xi
n)a2(Xi

n)2 = a2Xi
n(1−Xi

n)

we deduce that Xi
∞ ∈ {0, 1} and from E[Xi

∞ | Xi
n] = Xi

n that Xi
∞ follows a Bernoulli distribution of

parameter Xi
0.

After a infinite number of transactions, one player concentrates all the wealth as empirically ob-
served in the numerical exercise of Section 1. Nevertheless it is easy to see that it is not possible
for one player to be ruined after a finite number of rounds because the random variable Xi

n ranges
across the interval [(1−a)nXi

0, 1+(1−a)n(Xi
0−1)]. If we want to obtain theoretical approximations

of almost-bankruptcy times, analytic computations quickly become prohibitive. In the next part,
we give a precise answer to this question at the very least in the case of small and high-frequency
transactions.

Remark: In the repeated version of the elementary calabash game described in Example 1, the
situation is different, due to the fact that bets are discrete. Let Xi

n be the wealth of player i after n
transactions and N i

n the number of seeds bet by player i at stage n with 0 < N i
n 6 Xi

n if Xi
n 6= 0 and

N i
n = 0 otherwise (the game is finished when one of the player is ruined). We have X1

n + X2
n = N

(zero-sum game) and
X1
n = X1

0 +
∑

1 6 n 6 k

P 1
j

where
P 1
n = N2

n1Un 6 N1
n

N1
n+N2

n

−N1
n1Un> N1

n
N1
n+N2

n

and where (Un)n∈N∗ is a sample of the uniform distribution on [0, 1]. If we denote by (Fn)n∈N∗

the filtration generated by the (Un)n∈N∗, supposing that the processes (N i
n)n∈N∗ and (N2

n)n∈N∗ are
predictable, the process (X1

n)n∈N is a bounded martingale fulfilling

E[(X1
n+1 −X1

n)2 | Fn] = N1
n+1N

2
n+1.
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Thus, in this case, one of the player is almost-surely ruined in finite time.

2.1.2 Elementary market games with proportional bets: Continuous time case

In this section we prove that the sequence of stochastic processes obtained from the preceding Markov
chains by transforming the time scales and state spaces appropriately5 converges weakly to a diffusion
process, the latter being more amenable to analysis.

Let f : R → R be a measurable and bounded mapping. For all a ∈ R+ and x ∈]0, 1[ we define
the generator Aa of the elementary market game with parameter a:

Aa[f ](x) = E[f(X1
1 )− f(X1

0 ) | X1
0 = x] = xf(x+ a(1− x)) + (1− x)f(x− ax)− f(x).

In particular, when f is of class C∞ with a compact support in the interval ]0, 1[, we obtain from
Taylor expansion that 1

a2
Aaf uniformly converges toward 1

2x(1− x)f”(x) when a goes to 0.

Considering the process (Zat )t∈R+ that is the rescaled (at frequency a2) continuous time linear
interpolation of the sequence (X1

n)n∈N with X1
0 = x:

Zana2 = X1
n ∀n > 0

Za(n+θ)a2 = Zana2 + θ(Za(n+1)a2 − Z
a
na2) θ ∈ [0, 1] ∀n > 0,

we obtain from classical arguments (see for example [26] Chap. 11) the uniform weak convergence
of (Zat )t∈R+ when a goes to 0 toward the diffusion process (Xt)t∈R+ , associated to the infinitesimal
generator

A[f ](x) =
1

2
x(1− x)f”(x), (1)

that is the unique strong solution of the Stochastic differential equation

dXt =
√
Xt(1−Xt)dBt 0 < X0 < 1 (2)

where Bt is a standard Brownian motion6.

The diffusion process (2) is known in mathematical genetics as the Wright-Fisher process. It is of-
ten encountered as diffusion approximation of classical discrete stochastic models used in populations
genetics (see [9] Chap. 7 or [10] Chap. 3)7.

5The convergence result we obtain in this section is in some sense an answer to the following remark of Sheng in
[25] p. 493: "Then there arise some difficulties in the conversion problem, which place some restrictions on the choice
of the size and number of bets."

6This result of convergence requires the existence and the unicity of the martingale problem associated to the
generator A that is equivalent to the weak existence and the unicity in distribution of the solution of the associated
stochastic differential equation. Here, (2) having Hölderian coefficients of order 1

2
, from the Yamada-Watanabe theorem

(see [23] p. 360) we even deduce the strong existence and unicity of the solution of (2).
7If we consider a fixed population of size N (representing for example genes) with individuals that can be of two

different types (two alleles), the simplest neutral Wright-Fisher model of evolution assumes that generation (k + 1)
is formed from generation k by choosing N genes at random with replacement. If we denote by Y Nn the number of
individuals of type 1 in generation n, we have

P(Y Nn+1 = i|Y Nn = j) = CiN

(
j

N

)i(
1− j

N

)N−i
and the process X(N)

t = 1
N
Y

(N)

[tN ] weakly converges toward the Wright-Fisher diffusion (see [14]). Moreover, in this case,
the fixation time corresponding to the disappearance of type 2 individuals is finite almost surely (contrary to what
happens for the ruin time in elementary games with proportional bets).

6
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The points 0 and 1 are absorbing since the constant processes 0 and 1 are solutions of (2). The
process (Xt)t∈R+ is then a continuous and uniformly integrable martingale that converges almost-
surely toward 1 with probability X0 and toward 0 with probability (1−X0). The mapping

u(x) = −2[(1− x) log(1− x) + x log x]

being null at the boundary of [0, 1] and fulfilling Au = −1 on ]0, 1[, we obtain from the Dynkin’s
formula (see [8] Chap. 13) that

u(x) = E[T | X0 = x]

where T is the hitting time of the boundary {0, 1}. Thus, T is in L1 and so almost-surely finite. In
particular starting from X0 = 1

2 , the mean hitting time is 2 log 2.

Remark: Using the same approach, we can even show that eT is in L1. In fact, the mapping
h(x) = x(1− x) fulfills Ah = −h, thus defining ξ = h+ u+ 1 we have Aξ + h+ 1 = 0 and lim ξ = 1
at the boundary of [0, 1]. From the proof of Th. 13.17 in [8] we deduce that

ξ(x) = Ex[exp{
∫ T

0

1 + h(Xs)

ξ(Xs)
}ds].

The result follows because the continuous mapping 1+h(x)
1+u(x)+h(x) is bounded below (its minimum is

reached at 1
2 and is equal to 5

5+8log(2)).

In the Markov chain case, it is not possible for one player to be ruined after a finite number of
rounds. When we pass to the limit, the stepsize of the chain is shortened proportionally to a2 that
goes to zero. If for small ε > 0, Tε denotes the Markov chain exit time from [ε, 1−ε], when a is small
enough, Tε should8 be of order u(x)/a2 that is a decreasing function of a (the ruin time is smaller
for more speculative games). This intuition is confirmed by the simulations presented in Table 1.

a "Theoritical" ruin time Empirical ruin time
0.1 139 144
0.08 216 218
0.05 552 529
0.03 1533 1464
0.01 13900 13294

Table 1: Theoretical and empirical ruin times for elementary market games with proportional bets: The
theoretical ruin time corresponds to the Wright-Fisher approximate 2log(2)

a2 while the empirical one is obtained
as the average first exit time from [ε, 1 − ε] obtained for 1000 independent runs of the Markov chain game
with X1

0 = X2
0 = 0.5.

2.1.4 The buffering effect of a tax rate in the economy

In this section we study the impact of a small tax rate on the dynamic of the preceding Markov
chain. One of the simplest hypothesis is to consider a proportional capital tax rate that is collected

8This intuition is reinforced from the following theoretical result: if T aε denotes the exit time of the process Za from
[ε, 1− ε], T aε converges in distribution when a goes to zero toward the corresponding diffusion exit time ([12] Problem
3, Chap. 10).

7
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at any stage and uniformly reallocated to the players. With a tax rate b (b fulfilling 0 < a+ b < 1),
the transition of the Markov chain becomes

Xi
n+1 = (1− b)Xi

n + a(1−Xi
n)1Un+1 6 Xi

n
− aXi

n1Un+1>Xi
n

+
b

2

where (Uk)k∈N∗ is a sample of the uniform distribution on the unit interval9. This game remains a
zero-sum game that is not a FEG in general. In fact, we deduce easily from the preceding dynamic
that

E[X1
n+1 −X1

n] = −b(1− b)n(X1
0 −

1

2
).

Thus the game is FEG if and only if X1
0 = 1

2 (uniform initial wealth) when b > 0 and favors the
poorest player at any step 10 for different initial endowments. The state space of this Markov chain
being compact there exists at least one invariant distribution that is not a priori unique.11

We first perform a numerical study similar to the untaxed case: in a population of N = 100
players with uniformly distributed initial wealth: ∀i ∈ {1, ..., 100}, Xi

0 = 1/100, we select randomly
and independently two players that play an elementary market game with proportional bets (see
Example 3) with a = 10% and b = 1%. The impact of the small tax parameter b is substantial as
observed comparing Figures 1 and 4. The wealth distribution remains mostly uniform stages after
stages, the effect of randomness is regulated12. In particular the percentage of players that own less
than the average wealth stabilizes around 60%. Similarly, we have represented in Figure 5 the impact
of b on the Gini coefficient of the population after n = 100000 transactions. Even for very small
values of b the Gini coefficient reduces drastically.

In spite of its simplicity, it is a priori difficult to obtain explicitly one invariant measure of such
a Markov chains when b 6= 0 13. Therefore, we study the diffusion limit of the model for small and
high-frequency transactions. Following a similar approach as in Section 2.1.2, if f : R → R is a
measurable and bounded mapping, ∀a ∈ R+ and x ∈]0, 1[ the generator Aa of the elementary taxed
market game with parameters a and b becomes

Aa[f ](x) = E[f(X1
1 )− f(X1

0 ) | X1
0 = x] = xf((1− b)x+ a(1− x)) + (1− x)f((1− b)x− ax)− f(x).

In particular, when f is of class C∞ with a compact support in the interval ]0, 1[, we obtain from
Taylor expansion that 1

a2
Aaf uniformly converges toward

A[f ](x) =
1

2
x(1− x)f ′′ +

λ

2
(1− 2x)f ′

9Another natural choice is to impose the following dynamic

Xi
n+1 = (1− ba)Xi

n + a(1−Xi
n)1Un+1 6 Xi

n
− aXi

n1Un+1>Xi
n
+
ba

2
,

in this case the parameter b may be interpreted as a proportional transaction cost. All the results of this section remain
valid taking b = λa instead of b = λa2.

10Nevertheless, it may be seen as asymptotically FEG because E[X1
n+1 −X1

n]→ 0.
11The proof of the unicity of such a stationary distribution is not crucial for our purpose because this distribution

won’t be explicitly known. Moreover, any of these possible invariant distributions will be well approximated, for small
and high-frequency transactions, by the unique invariant stationary distribution of the Wright-Fisher diffusion with
mutations (see the proof of the Th. 2.2 of [12] p. 418).

12A similar mechanism of taxation is numerically studied in [3] with analogous conclusions.
13The same holds for the Wright-Fisher Markov chain with mutations.

8
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Figure 4: The first line (resp. the second line) represents the distribution of the wealth (resp. the distribution
of the increasing rearrangement of wealth) of the N = 100 players after n = 100 (first column), n = 1000
(second column), n = 10000 (third column) and n = 100000 (fourth column) FEG starting from uniformly
distributed initial wealth with a = 0.1 and b = 0.01.

Figure 5: Dependence of the Gini coefficient on the tax rate b in a population of N = 100 players after
n = 100000 transactions.

when a goes to 0 and b = λa2. The infinitesimal generator A is associated to the diffusion

dXt =
√
Xt(1−Xt)dBt +

λ

2
(1− 2Xt)dt 0 < X0 < 1 (3)

where Bt is a standard Brownian motion. This diffusion process is classically known (see [9] Chap.
7.2) as the one dimensional Wright-Fisher diffusion with mutations, the mutation rates being iden-

9
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tical (equal to λ
2 ) for the two alleles14.

Remark: We see on our model that a tax on the income yields a completely different asymptotic
result from a tax on the owned capital. In fact, in the Markov chain game, the rate b (and so λ)
may be seen as a capital tax rate because a fixed proportion of the wealth is collected. If we consider
instead an income tax uniformly redistributed among players, we obtain the following FEG

Xi
n+1 = Xi

n + a(1− b

2
)(1−Xi

n)1Un+1 6 Xi
n
− a(1− b

2
)Xi

n1Un+1>Xi
n
.

Here, we recover the untaxed dynamic with changed parameters, thus, when b is a constant, the
diffusion limit is related to the Wright-Fisher diffusion without mutations up to the factor (1− b

2)2:

dXt = (1− b

2
)2
√
Xt(1−Xt)dBt.

In particular, the parameter b is not sufficient to prevent the convergence toward the maximal in-
equality case and its only effect is to slow down the ruin. In fact, when Tb is the hitting time of the
boundary {0, 1} for the associated diffusion, we have by analogy with the untaxed case

E[Tb | X0 = x] = − 2

(1− b
2)2

[(1− x) log(1− x) + x log x].

In [21] where players follow optimal consumption-bequest plans the same distinction has been pointed
out between capital and income taxes with similar conclusions.

In the presence of tax (λ > 0), looking for an invariant measure m on ]0, 1[ fulfilling∫ 1

0
A[f ](x)g(x)dm(x) =

∫ 1

0
A[g](x)f(x)dm(x)

for f and g of class C∞ with a compact support in the interval ]0, 1[, we find a Beta probability
distribution

m(dx) =
[x(1− x)](λ−1)

β(λ, λ)
dx

that is symmetric with respect to the uniform initial wealth case x = 1
2 .

If λ > 1, there is a strong restoring force in the direction of x = 1
2 because the tax rate is

high, if λ = 1, the Lebesgue measure on [0, 1] is invariant and if 0 < λ < 1, the restoring force is
partially offset, the density of the invariant measure approaches infinity near the boundaries 0 and 1
remaining of finite mass. In all these cases, the Wright-Fisher diffusion is ergodic and converges in
distribution toward the invariant probability measure. In Figure 6, we have represented the invariant
density functions of the wright-Fisher diffusion with mutations for different values of the tax rate
λ to compare them with the empirical distribution of X1

100000 in the Markov chain market game
with b = λa2. In both cases we start from a maximal inequality case (λ = 0) to be more and more
concentrated around x = 1

2 when λ increases.

14In order to obtain at the limit the Wright-Fisher diffusion with different mutation rates

dXt =
√
Xt(1−Xt)dBt +

λ2

2
(1−Xt)dt−

λ1

2
Xtdt

we simply have to consider two different tax rates bi = λia
2 for the players.

10

Documents de Travail du Centre d'Economie de la Sorbonne - 2015.24



Figure 6: Invariant density function of the Wright-Fisher diffusion with mutations for different values of
λ (left part) and empirical distribution (using 1000 independent Monte Carlo simulations) of X1

100000 in the
Markov chain market game with parameters a = 0.1 and b = λa2 (right part).

To complete the analogy between the Markov chain market game and the limiting Beta distribu-
tion, remind that (see [22]) the Gini coefficient associated with the Beta(λ, λ) distribution is given
by

Gini(λ) =
2β(2λ, 2λ)

λβ(λ, λ)2
.

At stationarity, the small wealth probability fulfills

m
(
{X1

t 6 ε} ∪ {X2
t 6 ε}

)
∼
0+

2ελ

β(λ, λ)λ
= p(λ).

When ε < 1
4 , from the properties of the Beta function (see [1] Chap. 6), we can prove15 that p is

a decreasing function of λ (the small wealth probability decreases when the tax rate increases) and
that

lim
λ→0

p(λ) = 1 and lim
λ→∞

p(λ) = 0.

In Table 2 (resp. Table 3) we compare, for different values of λ, the Gini coefficient (resp. small
wealth probability) obtained from the Beta(λ, λ) distribution and the empirical Gini coefficient (resp.
empirical small wealth probability) obtained from 1000 independent realizations of X1

100000 in the
Markov chain market game with b = λa2: the results are close together.

15If we denote by ψn the polygamma function of order n (see [1] Chap. 6), we have log(p(λ))′ = log(ε)+ g(λ) where

g(λ) = −2(ψ0(λ)− ψ0(2λ))−
1

λ
= ψ0(λ+

1

2
)− ψ0(λ+ 1) + 2log(2).

Since g′(λ) = ψ1(λ+ 1
2
)− ψ1(λ+ 1) we can see that g is an increasing function (ψ1 being a decreasing one) bounded

by 2log(2). Thus, if ε < 1
4
, p is strictly decreasing. From β(λ, λ) ∼

0+

2
λ
and β(λ, λ) ∼

+∞
2
√
π√
λ

we deduce easily that

lim
λ→0

p(λ) = 1 and lim
λ→∞

p(λ) = 0.

11

Documents de Travail du Centre d'Economie de la Sorbonne - 2015.24



λ Theoretical Gini coefficient Empirical Gini coefficient
1 0.33 0.32
2 0.26 0.25
5 0.17 0.18
8 0.14 0.14
10 0.12 0.12

Table 2: Comparison between the Gini coefficient obtained theoretically from the Beta(λ, λ) distribution and
the empirical Gini coefficient obtained from 1000 independent realizations of X1

100000 in the Markov chain
market game with a = 0.1 and b = λa2.

λ Theoretical small wealth probability Empirical small wealth probability
0.1 0.81 0.85
0.5 0.4 0.44
1 0.2 0.23
2 0.06 0.05
3 0.02 0

Table 3: Comparison between the small wealth probability (ε = 0.1) obtained theoretically from the Beta(λ, λ)
distribution and the empirical small wealth probability obtained from 1000 independent realizations of X1

100000

in the Markov chain market game with a = 0.1 and b = λa2.

More generally, if we are interested in the players’ ruin problem (equivalent to know if the points
0 or 1 are accessible for the Wright-Fisher diffusion with mutations) remind that, for an infinitesimal
generator of the form

A[f ](x) =
1

2
x(1− x)f ′′ + b(x)f ′,

the scale function is given by

s(x) =

∫ x

1/2
exp[−

∫ y

1/2

2b(z)

z(1− z)
dz]dy.

Thus, the process being recurrent (0 or 1 are inaccessible) if and only if s(0+) = −∞ and s(1−) = +∞
(see [23] Ex. 3.21 p. 298), for the Wright-Fisher diffusion with mutations no players are ruined in
finite time as long as λ > 1. When it is strictly greater than 1, the tax rate λ induces a diversity
in the economy similar to the mutation rate impact in the genetic mixing. For the Markov chain
game, this condition implies b > a2. For example, when a = 10% the only condition to stabilize the
economy is to impose a tax rate strictly greater than the realistic value of 1%.

To conclude this section, let us remark that the Beta distribution ([22]) and some of its general-
izations (see [19] or [20]) have been widely used in the literature as descriptive models for the size
distribution of income and are interesting alternatives to Pareto-like distributions. Here we find a
very simple agent-based model for understanding how it can naturally appear in wealth repartition
problems through fair elementary games and we see that the parameter of the obtained symmetric
(about 1

2) Beta distribution is related to the underlying tax rate.

2.2 N players games

The aim of this section is to extend the study of the preceding dynamics (with or without tax) to the
N players case. This can be achieved via different transaction mechanisms but we suppose here that

12
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one player plays against all his opponents at each stage and we consider a proportional tax uniformly
distributed among all the players. In other words, if we denote by Xn = (X1

n, ..., X
N
n ) the vector of

wealth after n rounds we have ∀n ∈ N, ∀i ∈ {1, ..., N},

Xn+1 = (1− (a+ b))Xn + aei +
b

N
with probability Xi

n

with a+ b < 1 and where ei denotes the vector with a 1 in the ith coordinate and 0’s elsewhere. It
is easy to see by induction that starting from a point X0 in the simplex{

x = (x1, ..., xN ) ∈ RN |
N∑
i=1

xi = 1, xi > 0

}
,

(Xn)n∈N stays in the simplex.

Now we study the asymptotic behavior of the vectorial Markov chain (Xn)n∈N with or without
tax, we present only the main lines that follow the 2 players case.

2.2.1 The case without tax, b = 0.

The vector (Xn)n∈N is once again a bounded martingale that converges almost surely and in
Lp 1 6 p < +∞, toward X∞ that is invariant with respect to the transition of the chain. From

E[| Xn+1 −Xn |2| Xn] =

N∑
i=1

Xi
n[
∑
j 6=i

a2Xj
n + a2(1−Xi

n)2] = a2(1−
N∑
i=1

(Xi
n)2)

we deduce that X∞ almost surely belongs to the vertices of the simplex and that X∞ = ei with
probability Xi

0.

To study the ruin times of the players, we consider the game with small and high frequency
transactions: If F is a function from RN into R of class C∞ with compact support we have

Aa[F ](x) = E[F (X1)− F (X0) | X0 = (x1, ..., xN )] =

N∑
i=1

xiF ((1− a)X0 + aei)− F (X0).

Using the Taylor formula we prove that 1
a2
Aa[F ](x) uniformly converges, when a goes to 0, toward

A[F ](x) =
1

2

N∑
i=1

xi(1− xi)F ′′i2(x)−
∑
i<j

xixjF ′′ij(x) =
1

2

N∑
i=1

xi(1− xi)F ′′i2(x)− 1

2

∑
i6=j

xixjF ′′ij(x).

Letting δij = 1 if i = j and 0 otherwise, the infinitesimal generator A becomes

A[F ](x) =
1

2

N∑
i,j=1

xi(δij − xj)F ′′ij(x).

This generator is classically associated to the N -allele Wright-Fisher diffusion (Xt)t∈R+ (see [9] Chap.
8) and the rescaled continuous time linear interpolation at frequency a2 of the sequence (Xn)n∈N
converges in distribution toward (Xt = (X1

t , ..., X
N
t ))t∈R+ fulfilling ∀i ∈ {1, ..., N}

dXi
t = Xi

t

√
X1
t dB

1
t +Xi

t

√
X2
t dB

2
t + · · ·+ (Xi

t − 1)
√
Xi
tdB

i
t + · · ·+Xi

t

√
XN
t dB

N
t

13

Documents de Travail du Centre d'Economie de la Sorbonne - 2015.24



where (B1, ..., BN ) are independent standard Brownian motions.16

Following [17], we remark that the mapping uN defined on the simplex by

uN (x) = −2

 N∑
i=1

ϕ(xi)−
∑
i<j

ϕ(xi + xj) +
∑
i<j<k

ϕ(xi + xj + xk)− · · ·

· · ·+ (−1)N
∑

j1<j2<···<jN−1

ϕ(xj1 + xj2 + · · ·+ xjN−1)


where ϕ(x) = x log x, is zero at the faces of the simplex and fulfills AuN = −1 at its interior17. Thus,
if TN denotes the first hitting time of the faces of the simplex (that is the time when a first player
is ruined), E[TN | X0 = (x1, ..., xN )] = uN (x). In particular, starting from the uniform situation
X0 = ( 1

N , . . . ,
1
N ) we have

E[TN | X0 = (
1

N
, . . . ,

1

N
)] = uN (X0) = 2

N−1∑
k=1

(−1)kCkNϕ(
k

N
) (4)

and this quantity converges toward 0 when N goes to infinity18. In the same way, the mapping
wN (x) = −2

∑N
i=1(1 − xi) log(1 − xi) also fulfils AwN = −1 on the simplex except for the vertices

and is zero at the vertices. Thus if SN denotes the first hitting time of the vertices (that is the time
when all the players except one are ruined), SN is almost-surely finite and we have

E[SN | X0 = (
1

N
, . . . ,

1

N
)] = −2N(1− 1

N
) log(1− 1

N
)→ 2.

Remark: Using the mapping hN (x) =
∑N

i=1 x
i(1 − xi), we can prove in the spirit of Section

2.1.2 that SN has a finite exponential moment.

2.2.2 The case b 6= 0

Supposing that b = λa2 > 0, we can prove that the generator Aa associated to the N players
game with proportional bet and tax converges toward

Aλ[F ](x) =
1

2

N∑
i,j=1

xi(δij − xj)F ′′ij(x) +
N∑
i=1

λ

N
(1−Nxi)F ′i (x)

that is the infinitesimal generator associated to the N -allele Wright-Fisher diffusion with a uniform
mutation rate of λ

N (see [9] p. 314). The unique invariant probability measure of the associated
diffusion is given by the following Dirichlet distribution:

16Classically this convergence holds when the limit diffusion has a unique weak solution. For N = 2, we have
seen that the result is a simple consequence of the Yamada-Watanabe theorem (see [23] p. 360) for one dimensional
diffusions. For the general case, this stochastic differential equation with bounded coefficients has a weak solution (see
[16], Th. 2.2, Chap. 4). For the unicity, we can do an induction reasoning on the dimension N because in the interior
of the simplex the coefficients are C1 and Lipschitz (classical conditions for strong existence and unicity) and because
the faces of the simplex are absorbing sets for the diffusion with almost-surely finite hitting times (see also [11]).

17If N = 2, u2(x) = −2[x1 log(x1) + x2 log(x2)] and we recover the function u of Section 2.1.2.
18If ϕ =

∑
p∈Z ape

2iπpx is the Fourier series representation of a the function ϕ we have uN (X0) = 2
∑
p∈Z ap[(1 −

e2iπ
p
N )N − 1] → −

∑
p ap. But ϕ being of bounded variations, using the Dirichlet-Jordan test ([15]), we obtain∑

p ap = ϕ(0) = 0.
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mN (dx) =
Γ(2λ)

Γ(2λN )N

N∏
i=1

x
( 2λ
N
−1)

i dx,

in particular, the marginal distributions are Beta
(
2λ
N ,

2(N−1)λ
N

)
distributions and the small wealth

probability of any agent fulfills

mN

(
{X1

t 6 ε}
)
∼
0+

Nε
2λ
N

2β
(
2λ
N ,

2(N−1)λ
N

)
λ

= pN (λ).

Thus, we can prove that (see [1] Chap. 6 and Footnote 15)

pN (λ) →
N→∞

1, lim
λ→0

p(λ) =
N − 1

N
and lim

λ→∞
p(λ) = 0.

.

3 Conclusion

We have shown that a simplified economy of N agents who exchange by zero-sum games fair in
expectation converges in the almost sure sense to the situation where a single agent concentrates all
the wealth. The mathematical study can be pushed more accurately by considering the limit diffusion
process obtained for small and frequent transactions and we recover at the limit some classical models
used in population genetics.

We also prove, in our framework, that the presence of a tax on the owned capital removes this
convergence to the extreme inequality even for a low tax level. The economy converges in this case to
a random situation which mix the respective fortunes of the agents. Surprisingly, when income taxes
are considered the dynamic is drastically different: a tax on the income only slows the dynamics
towards the extreme inequality.

Let us mention finally that this study can be extended thanks to other classical mathemati-
cal tools from population genetics that provide an interesting enlighting, namely the passage to an
infinite population represented by a measure 19. This gives a new economic interpretation of the
so-called Fleming-Viot process ([10]) that achieves a kind of zoom on the situation where only a few
agents are not yet ruined.

19such a representation has been used as soon as in 1982 by G. Debreu for another problem in [7] p. 125 et seq.
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4 Appendix

Elementary market games with proportional bets may be seen as randomized versions
of the calabash game of Example 1.

In fact, if we take in the framework of Example 1, X1
0 (N) = [pNN ] where [x] denotes the entire

part of x and where (pN )N∈N∗ is a sequence in [0, 1] that converges toward p ∈]0, 1[ and

N i
1(N) = 1 +

X1
0 (N)−1∑
k=1

H i
k

where the (H i
k)(i,k)∈{1,2}×N∗ are independent random variables such that H i

k follows a Bernoulli

distribution of parameter aXi
0(N)−1

Xi
0(N)−1 . Thus, we obtain a one stage calabash game where the players

randomly select the number of seeds with bets that are proportional in expectation to their initial
wealth because E[N i

1(N)] = aXi
0(N). From

X1
1 (N) = X1

0 (N) +N2
1 (N)1

U1 6
N1
1 (N)

N1
1 (N)+N2

1 (N)

−N1
1 (N)1

U1>
N1
1 (N)

N1
1 (N)+N2

1 (N)

,

if we suppose that the sequence (H i
k)(i,k)∈{1,2}×N∗ is independent of U1 we have ∀t ∈ R

E
[
eit

X1
1(N)

N

]
= eit

X1
0(N)

N E
[
eit

N2
1 (N)

N
N1

1 (N)

N1
1 (N) +N2

1 (N)
+ e−it

N1
1 (N)

N
N2

1 (N)

N1
1 (N) +N2

1 (N)

]
.

Since
∞∑
k=1

V ar[H i
k]

k
<∞ and

1

N
E

[
N∑
k=1

H i
k

]
→ a,

we deduce from the Kolmogorov’s strong law of large numbers (see [24], Th. 2.3.10) that 1
N

N∑
k=1

H i
k

converges almost surely toward a and that N1
1 (N)
N (resp. N2

1 (N)
N ) converges almost surely toward ap

(resp. a(1− p)). Thus, by the dominated convergence theorem

E
[
eit

X1
1(N)

N

]
→ eitp(1−a)(1− p) + eit(a(1−p)+p)p

and (
X1

0 (N)
N ,

X1
1 (N)
N ) converges in distribution toward the elementary market game with proportional

bets of Example 3.
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